Basic Water and Wastewater Formulas

By Zane Satterfield, P. E., NESC Engineering Scientist

Summary

Operators obtaining or maintaining their certification must be able to calculate complex formulas and conversion factors. This Tech Brief provides basic examples of these formulas and conversion factors.

Metric Conversion Factors (Approximate) Conversions from Metric Measures

Symbol	Whe	\# You Know	Mortiply By	To Find	Symbol	
Length Area	mm	millimeters	0.04	inches	in	
	cm	centimeters	0.4	inches	in	
	m	meters	3.3	feet	ft	
	m	meters	1.1	yards	yds	
	km	kilometers	0.6	miles	mi	
Mass (Weight)	cm^{2}	square centimeters	0.16	square inches square yards square miles acres	$\begin{aligned} & \mathrm{in}^{2} \\ & \mathrm{yd}^{2} \\ & \mathrm{mi}^{2} \\ & \mathrm{acrs} \end{aligned}$	
	m^{2}	square meters	1.2			
	km^{2}	square kilometers	0.4			
	ha	hectares ($10,000 \mathrm{~m}^{2}$)	2.5			
Volume Temp ${ }_{\mathrm{k}}^{\mathrm{g}}$$F=(9 / 5) C+32 t$		grams	0.035	ounces pounds short tons	$\begin{aligned} & \text { oz } \\ & \text { lbs } \end{aligned}$	
		kilograms tones ($1,000 \mathrm{~kg}$)	2.2			
		1.1				
	ml		milliliters	0.03	fluid ounces pints quarts gallons cubic feet cubic yards	$\begin{aligned} & \mathrm{fl} \mathrm{oz} \\ & \mathrm{pt} \\ & \mathrm{qt} \\ & \mathrm{gal} \\ & \mathrm{ft}^{3} \\ & \mathrm{yd}^{3} \end{aligned}$
	1	liters	2.1			
	1	liters	1.06			
	1	liters	0.26			
	m^{3}	cubic meters	35.0			
	m^{3}	cubic meters	1.3			
	${ }^{0} \mathrm{C}$	Celsius temperature	$\begin{aligned} & 9 / 5 \text { (then } \\ & \text { add } 32 \text {) } \end{aligned}$	Fahrenheit temperature	${ }^{0} \mathrm{~F}$	

Basic Water and Wastewater Formulas

Area, $f t^{2} \quad$ Rectangle, Width, $f t \mathrm{x}$ Length, $f t$
Circle, $\quad(\text { Diameter, } f t)^{2} \pi 4$
Backwash Rate, $g p m / f t^{2} \quad$ Flow, $g p m$
Area, $f t^{2}$
Filtration Rate, $g p m / f t^{2}$
Flow, gpm
Area, $f t^{2}$
Chlorine Dose, $m g / L$
Cl_{2} Demand, $m g / L+$ Free Cl_{2} Residual, $m g / L$

Circumference
of a circle, $f t$
(π) (Diameter, $f t$)
or
$2(\pi)$ (Radius, $f t$)
Detention time, hrs (Volume, gal)(24 hrs/day) Flow, gpd

Flow, cfs
(Velocity, $f t / s e c$) (Area, $f t^{2}$)

Velocity, ft/sec
Flow, cfs
Area, $f t^{2}$

Distance,ft.
Time, sec.

Water Horsepower, HP (Flow, gpm) (Head, ft) 3960

Pounds, lbs (Flow, MGD)(Conc. $m g / L$)(8.34 lbs/gal)

Power, watts
(Voltage, volts)(Current, amp)
Power Factor Actual Power, watts Apparent Power, V-A

Removal, \%
In - Out In
Solution Strength, \% Weight of Chemical Weight of Solution $\times 100$

Surface Overflow Rate, gpd/ft ${ }^{2}$ Flow, gpd Area, ft^{2}

Temperature	${ }^{\circ} \mathrm{F}\left(1.8 \mathrm{x}{ }^{\circ} \mathrm{C}\right)+32$
	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}-32\right)(5 / 9)$
Velocity, $f t / \mathrm{sec}$	Flow, $f t^{3} / \mathrm{sec}$
	_ Area, $f t^{2}$

Volume, $f t^{3}$
Rectangle; Width, ft \times Length, ft \times Height, ft
Cylinder; $\frac{\pi \text { (Diameter, } f t)^{2}}{4} \underline{(\text { Height, } \mathrm{ft})}$
Cone; $\boldsymbol{\pi}$ (Diameter, ft$)^{2}(\underline{\text { Height,ft) }} 12$
Sphere; π (Diameter, ft$)^{3}$

Reservoir Volume, gal. =
Volume, ac-ft x $43,560 \mathrm{ft}^{2} / \mathrm{ac} . \mathrm{x} 7.48 \mathrm{gal} / \mathrm{ft}^{3}$
Reservoir Surface Area, ac. =

$$
\frac{\text { Surface Area, } \mathrm{ft}^{2}}{43,560 \mathrm{ft}^{2} / \mathrm{ac}}
$$

Slope $=\quad \underset{\text { Length, } \mathrm{ft}}{\text { Fall, } \mathrm{ft}}$
Grade $=\quad \frac{\text { Rise, } \mathrm{ft}}{\text { Run, } \mathrm{ft}}$

Conversion Factors

$1 \mathrm{ft}^{3}$ water $=7.48 \mathrm{gal}$	1 liter $/ \mathrm{sec}=15.85 \mathrm{gpm}$	1 kilowatt $=1.34 \mathrm{HP}$
$1 \mathrm{yd}^{3}=27 \mathrm{ft}^{3}$	$1 \mathrm{acre}=43,560 \mathrm{ft}^{2}$	$1 \mathrm{HP}=550 \mathrm{ft}-\mathrm{lbs} / \mathrm{sec}$
1 gal water $=8.34 \mathrm{lbs}$	$1 \mathrm{psi}=2.31$ feet of water	$1 \mathrm{HP}=0.746$ kilowatts
$1 \mathrm{ft}^{3}$ water $=62.4 \mathrm{lbs}$	$1 \mathrm{mg} / \mathrm{L}=1 \mathrm{ppm}$	1 meter $=3.28$ feet
$1 \mathrm{MGD}^{*}=694 \mathrm{gpm}$	$1 \%=10,000 \mathrm{mg} / \mathrm{L}$	1 mile $=5280$ feet
$1 \mathrm{MGD}=1.547 \mathrm{cfs}$	1 kilogram $=2.20 \mathrm{lbs}$	1 kilopascal $=0.145 \mathrm{psi}$
1 liter $=0.264 \mathrm{gal}$	1 centimeter $=0.394$ inches	$\pi(\mathrm{Pi})=3.1416$

*MGD = million gallons per day

Powers of Ten

Prefixes and symbols to form decimal multiples and/or submultiples.

Power of Ten	E Notation	Decimal Equivalent	Prefix	Phonic	Symbol
10^{12}	$\mathrm{E}+12$	$1,000,000,000,000$	tera	ter'a	T
10^{9}	$\mathrm{E}+09$	$1,000,000,000$	giga	ji'ga	G
10^{6}	$\mathrm{E}+06$	$1,000,000$	mega	meg'a	M
10^{3}	$\mathrm{E}+03$	1,000	kilo	kil'o	k
10^{2}	$\mathrm{E}+02$	100	hecto	hek'to	h
10	$\mathrm{E}+01$	10	deka	dek'a	da
10^{-1}	$\mathrm{E}-01$	0.1	deci	des'I	d
10^{-2}	$\mathrm{E}-02$	0.01	centi	sen'ti	c
10^{-3}	$\mathrm{E}-03$	0.001	milli	mil'I	m
10^{-6}	$\mathrm{E}-06$	$0.000,001$	micro	mi'kro	u
10^{-9}	$\mathrm{E}-09$	$0.000,000,001$	nano	nan'o	n
10^{-12}	$\mathrm{E}-12$	$0.000,000,000,001$	pico	pe'ko	p
10^{-15}	$\mathrm{E}-15$	$0.000,000,000,000,001$	femto	fem'to	f
10^{-18}	$\mathrm{E}-18$	$0.000,000,000,000,000,001$	atto	at'to	a

Sample Questions

1. An empty storage tank at standard atmospheric pressure (not under pressurized condition) is 8 feet in diameter and 32 feet high. How long will it take to fill 90 percent of the tank volume if a pump is discharging a constant 24 gallons per minute into the tank?
a. 7 hours and 31 minutes
b. 8 hours and 21 minutes
c. 8 hours and 23 minutes
d. 9 hours and 17 minutes

Solution: Don't look at the problem as a whole. Instead, break it into steps:

First, calculate the area of a circle 8 feet in diameter;
$\frac{(\text { Diameter, } \mathrm{ft})^{2}}{4} \pi, \frac{8}{4}^{2} \pi, \frac{64}{4} \pi, 16(3.1416)=50.26 \mathrm{ft}^{2}$
Second, calculate the volume of a cylinder;
$(\text { Diameter, } \mathrm{ft})^{2} \pi$ (Height, ft),
4 since the area is already calculated, just multiply by the height.
$50.26 \mathrm{ft} 2 \times 32 \mathrm{ft}$ high $=1,608.5 \mathrm{ft}^{3}$ (cubic feet)
Third, convert from ft^{3} (cubic feet) to gallons; $1 \mathrm{ft}^{3}$ water $=7.48$ gallons

Fourth, calculate what 90% of the total volume would be
$12,031.5$ gallons $\times \frac{90 \%}{100}$,
$12,031.50$ gallons $\mathrm{x} .90=10,828.39$ gallons
Fifth, calculate time to pump at 24 gallons per minute

10,828.39 gallons $=451.18$ minutes 24 gallons minute

Sixth, convert minutes to hours and minutes; 60 minutes $=1$ hour
451.18 minutes $=7.52$ hours 60 minutes
hour
Now take the .52 hours and multiply by 60minutes/hour

7 hours and $(0.52 \times 60)=31.2$ minutes
7 hours and 31 minutes
The answer is $a .7$ hours and 31 minutes

2. How many cubic feet of water will a rectangular tank that is 20 -feet long by 15 -feet wide and 10 -feet high hold?
 a,000 cubic feet
 b. 3,000 cubic feet
 c. 850 cubic feet
 d. 1,200 cubic feet

Solution:

Calculate the volume for a rectangular box ($\mathrm{L} \times$ W x D or H) Length x Width x Depth or Height.
$20 \mathrm{ft} \times 15 \mathrm{ft} \times 10 \mathrm{ft}=3,000 \mathrm{ft}^{3}$ (cubic feet)
The answer is b. 3,000 cubic feet

3. Calculate the chlorine demand using the following data:

Raw water flow is 0.75 MGD
Chlorinator feed rate is $4.0 \mathrm{mg} / \mathrm{L}$
Chlorine residual (free) is $1.8 \mathrm{mg} / \mathrm{L}$
a. $\quad 0.8 \mathrm{mg} / \mathrm{L}$
b. $2.2 \mathrm{mg} / \mathrm{L}$
c. $4.0 \mathrm{mg} / \mathrm{L}$
d. $5.8 \mathrm{mg} / \mathrm{L}$

Solution:

If solution strength is not given, then use 100%
Often more information is given than needed to solve specific problems. In this problem, the raw water flow rate (0.75 MGD) is not needed.

The equation to be used is the Chlorine Dose Equation

Chlorine Dose, mg/L =
$\left(\mathrm{Cl}_{2}\right.$ Demand, $\left.\mathrm{mg} / \mathrm{L}\right)+$ Free Cl_{2} Residual, mg / L
Solve this Equation for the Chlorine Demand $\mathrm{Cl}_{2}, \mathrm{mg} / \mathrm{L}$;
Cl_{2} Demand, mg/L=
Chlorine Dose, mg/L - Free Cl_{2} Residual, mg/L
Cl_{2} Chlorine Demand, $\mathrm{mg} / \mathrm{L}=$
$4.0 \mathrm{mg} / \mathrm{L}-1.8 \mathrm{mg} / \mathrm{L}$
Cl_{2} Chlorine Demand, $\mathrm{mg} / \mathrm{L}=2.2 \mathrm{mg} / \mathrm{L}$
The answer is b. $2.2 \mathrm{mg} / \mathrm{L}$
4. Calculate the volume, in gallons, of a tank that is $\mathbf{7 5}$ feet long, 20 feet high, and 10 feet deep.
a. 15,000 gallons
b. 112,200 gallons
c. 150,000 gallons
d. 224,400 gallons

Solution:
First, calculate the volume for a rectangular box (L x W x D or H) Length x Width x Depth or
$75 \mathrm{ft} \times 20 \mathrm{ft} \times 10 \mathrm{ft}=15,000 \mathrm{ft}^{3}$ (cubic feet)
Second, convert ft^{3} (cubic feet) to gallons, $1 \mathrm{ft}^{3}$ (cubic feet) water $=7.48$ gallons

$$
\begin{aligned}
15,000 \mathrm{ft}^{3} \times \underset{\mathrm{ft}^{3}}{7.48 \text { gallons }}= & \begin{array}{l}
112,200 \text { gallons, } \\
\text { this is the tank } \\
\text { volume in gallons }
\end{array}
\end{aligned}
$$

The answer is b. 112,200 gallons
5. How many pounds of a chemical applied at the rate of $3 \mathrm{mg} / \mathrm{L}$ are required to dose $\mathbf{2 0 0}, 000$ gallons?
a. 1 lb
b. 3 lbs
c. 5 lbs
d. 16 lbs

Solution:

If a solution strength is not given, use 100%
The equation to be used is the pounds, lbs equation - (Flow, MGD)(Conc.mg/L)(8.34 lbs/gal)

Convert the flow or gallons to MGD;
$\xlongequal{200,000}$ gallons per day $=0.2 \mathrm{MGD}$
1,000,000 million gallons
The concentration is the rate in this case $=3 \mathrm{mg} / \mathrm{L}$
Now plug the givens (known) into the pounds equation
$(0.2, \mathrm{MGD})(3 \mathrm{mg} / \mathrm{L})(8.34 \mathrm{lbs} /$ gal, day $)=5.004 \mathrm{lbs}$
The answer is c. 5 lbs

References:

Glover, Thomas J. 1999. Pocket Reference. Sequoia Publishing, Inc.: Littleton, CO.
National Environmental Services Center, 2007. Basic Water \& Wastewater Formulas Product \# DWPCOM84.
U.S. Navy. Physics Formulas notebook sheet.

Virginia Center for Very Small Water Works. 2003. Sample Test Questions. http:/ / www.vaclassix.com/files/VSWS_samplequestions_answers.pdf

