

Basic Water and Wastewater Formulas

By Zane Satterfield, P. E., NESC Engineering Scientist

Summary

Operators obtaining or maintaining their certification must be able to calculate complex formulas and conversion factors. This *Tech Brief* provides basic examples of these formulas and conversion factors.

Metric Conversion Factors (Approximate) Conversions from Metric Measures

Symbol	Whe	n You Know	Multiply By	To Find	Symbol
Length Area	mm cm m m km	millimeters centimeters meters meters kilometers	$0.04 \\ 0.4 \\ 3.3 \\ 1.1 \\ 0.6$	inches inches feet yards miles	in in ft yds mi
Mass (Weight)	cm ² m ² km ² ha	square centimeters square meters square kilometers hectares (10,000m ²	0.16 1.2 0.4) 2.5	square inches square yards square miles acres	${ m in}^2$ yd ² mi ² acrs
Volume Tem <i>F= (9/5)C+32</i>	0	grams kilograms tones (1,000kg)	0.035 2.2 1.1	ounces pounds short tons	oz lbs
	ml 1 1 m ³ m ³	milliliters liters liters liters cubic meters cubic meters	$\begin{array}{c} 0.03 \\ 2.1 \\ 1.06 \\ 0.26 \\ 35.0 \\ 1.3 \end{array}$	fluid ounces pints quarts gallons cubic feet cubic yards	fl oz pt qt gal ft ³ yd ³
	⁰ C	Celsius temperature	9/5 (then add 32)	Fahrenheit temperature	⁰ F
°F -40 -40 °C	0		98.6 80 120 20 40 60	160 20 	°F 212 0 100 °C

Basic Water and Wastewater Formulas

 \times

 \times

 \times

Area, ft^2 Rectangle, Width, ft x Length, ft Circle, (Diameter, ft) $^2 \pi 4$ Backwash Rate, gpm/ft^2 Flow, gpm Area, ft^2	Removal, % In - Out In Solution Strength, % Weight of Chemical Weight of Solution x 100 Surface Overflow Rate, gpd/ft ² Flow, gpd Area, It ²		
Filtration Rate, gpm/ft^2 Flow, gpm Area, ft^2 Chlorine Dose, mg/L Cl ₂ Demand, mg/L +Free Cl ₂ Residual, mg/L	Temperature $^{\circ}F(1.8 \text{ x} \ ^{\circ}C) + 32$ $^{\circ}C$ ($^{\circ}F-32$) (5/9) Velocity, ft/sec Flow, ft ³ /sec Area, ft ² Volume, ft ³		
2 2 Circumference of a circle, ft $(\pi)(Diameter, ft)$ or $2(\pi)(Radius, ft)$	Rectangle; Width, ft x Length, ft x Height, ft Cylinder; $\frac{\pi \text{ (Diameter, } ft)^2 \text{ (Height, ft)}}{4}$		
Detention time, hrs (Volume, gal)(24 hrs/day) Flow, gpdFlow, cfs(Velocity, ft/sec) (Area, ft^2)	Cone; $\frac{\pi \text{ (Diameter, ft)}^2(\text{Height,ft})}{12}$ Sphere; π (Diameter, $ft)^3$		
Velocity, ft/sec Flow, cfs Area, ft^2	Reservoir Volume , gal. = Volume, ac-ft x 43,560 ft ² /ac. x 7.48 gal/ft ³		
Velocity, ft/secDistance,ft. Time, sec.Water Horsepower, HP(Flow, gpm) (Head, ft)	Reservoir Surface Area, ac. = $\frac{Surface Area, ft^{2}}{43,560 ft^{2}/ac}$		
3960 Pounds , <i>lbs</i> (Flow, <i>MGD</i>)(Conc. <i>mg/L</i>)(8.34 <i>lbs/gal</i>) Power , <i>watts</i> (<u>Voltage</u> , <i>volts</i>)(Current, <i>amp</i>)	Slope = $\frac{\text{Fall, ft}}{\text{Length, ft}}$ Grade = $\frac{\text{Rise, ft}}{\text{Run, ft}}$		
Power FactorActual Power, watts Apparent Power, V-A			

Conversion Factors

1 ft ³ water = 7.48 gal	1 liter/sec = 15.85 gpm	1 kilowatt = 1.34 HP
$1 \text{ yd}^3 = 27 \text{ft}^3$	1 acre = 43,560 ft ²	1 HP = 550 ft-lbs/sec
1 gal water = 8.34 lbs	1 psi = 2.31 feet of water	1 HP = 0.746 kilowatts
1 ft ³ water = 62.4 lbs	1 mg/L = 1 ppm	1 meter = 3.28 feet
1 MGD* = 694 gpm	1% = 10,000 mg/L	1 mile = 5280 feet
1 MGD = 1.547 cfs	1 kilogram = 2.20 lbs	1 kilopascal = 0.145 psi
1 liter = 0.264 gal	1 centimeter = 0.394 inches	π (Pi) = 3.1416
	*MGD = million gallons per day	

PAGE OF FOUR

Powers of Ten

Prefixes and symbols to form decimal multiples and/or submultiples.

Power of Ten	E Notation	Decimal Equivalent	Prefix	Phonic	Symbol
10^{12}	E+12	1,000,000,000,000	tera	ter'a	Т
10 ⁹	E+09	1,000,000,000	giga	ji'ga	G
10^{6}	E+06	1,000,000	mega	meg'a	М
10 ³	E+03	1,000	kilo	kil'o	k
10^{2}	E+02	100	hecto	hek'to	h
10	E+01	10	deka	dek'a	da
10-1	E-01	0.1	deci	des'I	d
10 ⁻²	E-02	0.01	centi	sen'ti	с
10 ⁻³	E-03	0.001	milli	mil'I	m
10-6	E-06	0.000,001	micro	mi'kro	u
10-9	E-09	0.000,000,001	nano	nan'o	n
10-12	E-12	0.000,000,000,001	pico	pe'ko	р
10-15	E-15	0.000,000,000,000,001	femto	fem'to	f
10-18	E-18	0.000,000,000,000,000,001	atto	at'to	а

Sample Questions

- **1.** An empty storage tank at standard atmospheric pressure (not under pressurized condition) is 8 feet in diameter and 32 feet high. How long will it take to fill 90 percent of the tank volume if a pump is discharging a constant 24 gallons per minute into the tank?
 - **a**. 7 hours and 31 minutes
 - **b**. 8 hours and 21 minutes
 - **c.** 8 hours and 23 minutes
 - **d**. 9 hours and 17 minutes

Solution: Don't look at the problem as a whole. Instead, break it into steps:

First, calculate the area of a circle 8 feet in diameter;

 $\frac{\text{(Diameter, ft)}^2 \pi, \ \underline{8}^2 \pi, \ \underline{64}}{4} \pi, 16(3.1416) = 50.26 \text{ ft}^2}{4}$

Second, calculate the volume of a cylinder;

 $\begin{array}{ll} \underline{(\text{Diameter, ft)}^2 \pi} & (\text{Height, ft),} \\ 4 & \text{since the area is already} \\ & \text{calculated, just multiply by} \\ & \text{the height.} \end{array}$

 $50.26 \text{ ft2 x } 32 \text{ ft high} = 1,608.5 \text{ ft}^3 \text{ (cubic feet)}$

Third, convert from ft^3 (cubic feet) to gallons; 1 ft^3 water = 7.48 gallons $\begin{array}{rl} 1,608.5 \mbox{ ft}^3 \ge \frac{7.48 \mbox{ gallons}}{\mbox{ ft}^3} = 12,031.5 \mbox{ gallons}, \\ this is total \\ volume \ tank \\ can \ hold \\ \mbox{ Fourth, calculate what 90\% of the total} \end{array}$

12,031.5 gallons x <u>90%</u>, 100 12,031.50 gallons x .90 = 10,828.39 gallons

Fifth calculate time to pump at 24 gallons

Fifth, calculate time to pump at 24 gallons per minute

<u>10,828.39 gallons</u> = 451.18 minutes <u>24 gallons</u> minute

volume would be

Sixth, convert minutes to hours and minutes; 60 minutes = 1 hour

<u>451.18 minutes</u> = 7.52 hours <u>60 minutes</u> hour

Now take the .52 hours and multiply by 60minutes/hour

7 hours and $(0.52 \ge 60) = 31.2$ minutes

7 hours and 31 minutes

The answer is a. 7 hours and 31 minutes

- b. 3,000 cubic feet
- c. 850 cubic feet
- d. 1,200 cubic feet

Solution:

Calculate the volume for a rectangular box (L x W x D or H) Length x Width x Depth or Height.

20 ft x 15 ft x 10 ft = 3,000 ft³ (cubic feet)

The answer is b. 3,000 cubic feet

3. Calculate the chlorine demand using the following data:

Raw water flow is 0.75 MGDChlorinator feed rate is 4.0 mg/LChlorine residual (free) is 1.8 mg/L

- a. 0.8 mg/L
- b. 2.2 mg/L
- c. 4.0 mg/L
- d. 5.8 mg/L

Solution:

If solution strength is not given, then use 100%

Often more information is given than needed to solve specific problems. In this problem, the raw water flow rate (0.75 MGD) is not needed.

The equation to be used is the Chlorine Dose Equation

Chlorine Dose, mg/L =

 $(Cl_2 Demand, mg/L) + Free Cl_2 Residual, mg/L$

Solve this Equation for the Chlorine Demand Cl_2 , mg/L;

 Cl_2 Demand, mg/L =

Chlorine Dose, mg/L – Free Cl₂ Residual, mg/L

 Cl_2 Chlorine Demand, mg/L = 4.0 mg/L - 1.8 mg/L

 Cl_2 Chlorine Demand, mg/L = 2.2 mg/L

The answer is b. 2.2 mg/L

- 4. Calculate the volume, in gallons, of a tank that is 75 feet long, 20 feet high, and 10 feet deep.
 - a. 15,000 gallons
 - b. 112,200 gallons
 - c. 150,000 gallons
 - d. 224,400 gallons

Solution:

First, calculate the volume for a rectangular box (L x W x D or H) Length x Width x Depth or

75 ft x 20 ft x 10 ft = 15,000 ft³ (cubic feet)

Second, convert ft^3 (cubic feet) to gallons, 1 ft^3 (cubic feet) water = 7.48 gallons

 $\begin{array}{rl} 15,000 \ \text{ft}^3 \ge \frac{7.48 \ \text{gallons}}{\text{ft}^3} = & 112,200 \ \text{gallons},\\ & \text{this is the tank}\\ & \text{volume in gallons} \end{array}$

The answer is b.112,200 gallons

5. How many pounds of a chemical applied at the rate of 3 mg/L are required to dose 200,000 gallons?

- a. 1 lb
- b. 3 lbs
- c. 5 lbs
- d. 16 lbs

Solution:

If a solution strength is not given, use 100%

The equation to be used is the pounds, lbs equation – (Flow, MGD)(Conc.mg/L)(8.34 lbs/gal)

Convert the flow or gallons to MGD;

<u>200,000 gallons per day</u> = 0.2 MGD 1,000,000 million gallons

The concentration is the rate in this case = 3 mg/L

Now plug the givens (known) into the pounds equation

(0.2, MGD)(3 mg/L)(8.34 lbs/gal, day) = 5.004 lbs

The answer is c. 5 lbs

References:

Glover, Thomas J. 1999. Pocket Reference. Sequoia Publishing, Inc.: Littleton, CO.

National Environmental Services Center, 2007. Basic Water & Wastewater Formulas Product # DWPCOM84.

U.S. Navy. Physics Formulas notebook sheet.

Virginia Center for Very Small Water Works. 2003. Sample Test Questions. http://www.vaclassix.com/files/VSWS_samplequestions_answers.pdf

Published by The National Environmental Services Center at West Virginia University, P.O. Box 6064, Morgantown, WV 26506-6064